首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5270篇
  免费   1150篇
  国内免费   267篇
电工技术   19篇
综合类   290篇
化学工业   1144篇
金属工艺   480篇
机械仪表   17篇
建筑科学   106篇
矿业工程   1934篇
能源动力   46篇
轻工业   109篇
水利工程   51篇
石油天然气   37篇
武器工业   1篇
无线电   10篇
一般工业技术   103篇
冶金工业   2236篇
原子能技术   82篇
自动化技术   22篇
  2024年   27篇
  2023年   110篇
  2022年   217篇
  2021年   243篇
  2020年   230篇
  2019年   200篇
  2018年   186篇
  2017年   232篇
  2016年   325篇
  2015年   288篇
  2014年   376篇
  2013年   421篇
  2012年   420篇
  2011年   395篇
  2010年   277篇
  2009年   251篇
  2008年   207篇
  2007年   271篇
  2006年   246篇
  2005年   207篇
  2004年   190篇
  2003年   213篇
  2002年   160篇
  2001年   159篇
  2000年   157篇
  1999年   130篇
  1998年   95篇
  1997年   81篇
  1996年   66篇
  1995年   55篇
  1994年   36篇
  1993年   53篇
  1992年   31篇
  1991年   42篇
  1990年   22篇
  1989年   23篇
  1988年   16篇
  1987年   11篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1974年   1篇
  1951年   1篇
排序方式: 共有6687条查询结果,搜索用时 296 毫秒
61.
Rock phosphate fractions were examined for their porous structure by nitrogen adsorption. The pore size distribution and the shape of pores does not seem to depend on the particle size. The specific surface area values present two regions, one above and one below that of the particles with 125 μrn diameter. Particles of a given size were leached with dilute phosphoric acid (1.5 mass% P2O5) at 25°C. It was observed that there is a widening of the initial pores during leaching. The particles collected at the initial period of the reaction are pitted and those collected at the final period are disintegrated.  相似文献   
62.
Granular S, finely-ground S, iron sulphate and aluminium sulphate were added at two rates to the surface (0–6 cm) of a soil and acidification and leaching of nutrients were measured over 12 months in a laboratory study. Iron and aluminium sulphate both rapidly lowered soil pH in the top 0–6 cm of the soil. There was little difference in soil pH after 3 and 12 months reaction of these two amendments. In contrast, for granular S and finely-ground S there were clear decreases in soil pH between 3 and 12 months reaction with the soil. Finely-ground S was oxidized in the soil faster than granular S and therefore had a more acidifying effect. The top 0–6 cm of the soil was acidified by all the agents used but the deeper soil was less affected. The only treatments which lowered the pH of the 12–18 cm layer below pH 6 were the high rates of iron and aluminium sulphate. Soil acidification resulted in a decrease in exchangeable Ca, Mg and K, an increase in exchangeable Al and a decrease in effective CEC in the acidified soil layers.At both levels of addition, total ionic strength of percolates from the soil followed the order: aluminium sulphate = iron sulphate > finely gound S > granular S > control and was higher at the higher rate of addition. The pH values of percolates followed the order: control > granular S > finely ground S > iron sulphate = aluminium sulphate and were lower at the higher rate of addition. For the amended soils there was a very close relationship between the pattern and total amounts of SO 4 2- and Ca2+ leached.It was concluded that granular S is not an effective acidifying agent since it is oxidized very slowly in the soil and that acidfying agents should be incorporated to the depth that acidification is required.  相似文献   
63.
The technical feasibility of in situ uranium leaching using dilute sulfuric acid and molecular oxygen has been assessed and the important process parameters examined by use of laboratory high pressure leaching columns.

The dilute H2SO4/O2 lixiviant was effective in leaching uranium from the ore samples tested. The leaching process was chemical reaction rate limited and can be represented using pseudo first-order kinetics. The leaching rate constant is proportional to the proton concentration of the lixiviant.

Much of the uranium was leached from the ore before decomposition of carbonate minerals by the acid was complete. Acid consumption per pound of U3O8 increased sharply as the uranium recovery level exceeded 70%. There appears to be a minimum oxygen pressure for effective uranium leaching. A pressure of 2758 KPa was adequate for the ore samples tested  相似文献   
64.
以炼锌厂废锌灰为原料,经硫酸浸取制备活性氧化锌,考察了工艺条件对锌浸出率的影响。实验结果表明:锌灰在50℃浸取,酸用量40g/L,可使锌的溶出率达92.8%。碱式碳酸锌最佳水解温度为40℃,水解时间为2h,pH为7.5时,溶液中锌质量浓度为10g/L,得到96%以上的水解率。采用该工艺制得的氧化锌符合HG/T2572-1994。  相似文献   
65.
A field study was conducted in 1982 to measure the effect of no-till (NT) and conventional till (CT) systems on N transformation after surface and subsurface applications of N fertilizers. Urea, urea-ammonium nitrate (UAN) solution, (NH4)2SO4 (AS), and CA(NO3)2 were applied to NT and CT plots (5.95 m2) at a rate of 448 kg N ha–1. A comparison of fertilizer N recovered in soils receiving incorporated or surface applied N was used to estimate NH3 volatilization while denitrification was estimated from fertilizer N recovered in the presence and absence of nitrapyrin with incorporated N. Immobilization was assessed in microplots (0.37 m2) after surface application of (15NH4)2SO4 to NT and CT systems at a rate of 220 kg N ha–1.The results indicate little difference between NT and CT systems on urea hydrolysis rates and immobilization of surface applied fertilizer N. Approximately 50% and 10% of the surface applied N was recovered in the inorganic and organic fractions, respectively, on both tillage systems. The N not recovered was likely lost from plot areas through soil runoff. Incorporation of UAN, urea and AS resulted in 20 to 40% greater inorganic N recovery than from surface application. Nitrification rates were greater under the NT than the CT system. The similarities in concentration in the various N pools observed between the two tillage systems may be partially due to the short length of time that NT was imposed in this field study (<1 year) since other researchers using established tillage systems (>5 y) indicate that NT tends to promote decreased efficiency of fertilizer N.  相似文献   
66.
This work concerns the on-going development of efficient and environmentally friendly antifouling paints for biofouling control on large ocean-going ships. It is illustrated how a detailed mathematical model for a self-polishing antifouling paint exposed to seawater can be used as a product engineering tool to obtain a quick estimate of the paint behaviour that a given seawater-soluble pigment will provide. In the present context, “pigment” refers to relevant particulate solids of organic-, inorganic-, or biological nature. Simulations performed at 15 and 30 °C suggest that pigment solubility and seawater diffusivity of dissolved pigment species have a significant influence on the polishing and leaching behaviour of a typical self-polishing paint system. The pigment size distribution, on the other hand, only has a minor influence on the paint–seawater interaction. Simulations also indicate that only compounds which are effective against biofouling at very low seawater concentrations are useful as active antifouling paint ingredients. The need for model verification and exploration of practical issues, subsequent a given pigment has been found of interest, is discussed. The model approach is of relevance in the search for novel antifouling paints and for the development of accelerated test methods.  相似文献   
67.
The dissolution of molybdenite concentrate in NaCl electrolyte was investigated. The results show that the dissolution rate increases with the increase in liquid-to-solid ratio, stirring speed, NaCl concentration and temperature. When the liquid-to-solid ratio is 30:1, stirring speed is 400 r/min, concentration of NaCl is 4 mol/L at pH=9 and room temperature, the leaching efficiency of molybdenite concentrate will reach 99.5% in 240 min. Molybdenite concentrate cannot be electro-oxidized directly on the anode. The kinetic studies show that the dissolution of molybdenite concentrate is represented by shrinking core model with diffusion through a porous product layer of element sulfur, and the apparent activation energy for the dissolution reaction is 8.56 kJ/mol.  相似文献   
68.
A new process of extracting vanadium from stone coal   总被引:1,自引:0,他引:1  
A new process of extracting vanadium from the stone coal vanadium ore in Fangshankou, Dtmhuang area of Gansu Province, China was introduced. Various leaching experiments were carried out, and the results show that the vanadium ore in Fangshankou is difficult to process due to its high consumption of acid and the high leaching rate of impurities. However, the leaching rate can be up to 80% and the content of V2O5 in the residue can be between 0.22%-0.25% in the process of ore fine grinding→oxidation roasting→mixing and ripen-ing→aqueous leaching→P2O4 solvent extraction→sulfiuie acid stripping→oxidation and precipitation→decomposition by heat. Also, the quality of flaky V2O5 produced by this process can meet the requirements of GB3283-87. The total leaching rate of vanadium is 70%. Also, three types of wastes are easy to treat. The vanadium extraction process is better in relation to the aspect of environmental protection than the sodium method.  相似文献   
69.
为回收赤泥中的铝和铁,解决赤泥污染和占地问题,研究了用盐酸溶出废赤泥中的氧化铝和氧化铁的工艺,考察了赤泥的焙烧、盐酸与赤泥的液固比、盐酸的浓度、酸浸时间、酸浸温度及酸浸方式对赤泥中氧化铝、氧化铁浸出率的影响.结果表明:赤泥不需要焙烧,盐酸与赤泥的液固比4∶1,盐酸的浓度为6mol/L,酸浸温度在109℃左右,酸浸时间为60 min,酸浸方式为二次浸出,氧化铝和氧化铁的浸出率分别为89.00%和98.39%.  相似文献   
70.
Sulfuric acid leaching process was applied to extract nickel from roasting-dissolving residue of a spent catalyst, the effect of different parameters on nickel extraction was investigated by leaching experiments, and the leaching kinetics of nickel was analyzed. The experimental results indicate that the effects of particle size and sulfuric acid concentration on the nickel extraction are remarkable; the effect of reaction temperature is mild; while the effect of stirring speed in the range of 400–1 200 r/min is negligible. Decreasing particle size or increasing sulfuric acid concentration and reaction temperature, the nickel extraction efficiency is improved. 93.5% of nickel in residue is extracted under suitable leaching conditions, including particle size (0.074–0.100) mm, sulfuric acid concentration 30% (mass fraction), temperature 80 °C, reaction time 180 min, mass ratio of liquid to solid 10 and stirring speed 800 r/min. The leaching kinetics analyses shows that the reaction rate of leaching process is controlled by diffusion through the product layer, and the calculated activation energy of 15.8 kJ/mol is characteristic for a diffusion controlled process. Foundation item: Project (50574101) supported by the National Natural Science Foundation of China; Project (2003UDBEA00C020) supported by the Collaborative Project of School and Province of Yunnan Province, China  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号